Search results for "Grid connected"
showing 10 items of 12 documents
Design and simulation of a fast DC recharging station for EV
2017
In this paper a detailed description of the design and simulation of a DC ultra-fast recharging station for Electric Vehicles is carried out. The system consist of a single AC/DC grid connected inverter, a DC-Bus and two DC/DC converter to recharge the batteries of the EVs. The system also has the vehicleto- grid (V2G) capability. The design of the components of the system and the control schemes are explained and a simulation of the system, performed in Matlab/Simulink environment is presented.
Adaptive Feed-Forward Neural Network for Wind Power Delivery
2022
This paper describes a grid connected wind energy conversion system. The interconnecting filter is a simple inductor with a series resistor to minimize three-phase current Total Harmonic Distortion (THD). Using the Recursive Least Squares (RLS) Estimator, an online grid impedance technique is proposed in the stationary reference frame using the Recursive Least Squares (RLS) Estimator. An Adaptive Feedforward Neural (AFN) Controller has also been developed using the inverse of the system to improve the performance of the current Proportional-Integral controller under dynamical conditions and provide better DC link voltage stability. The neural network weights are computed in real-time using …
Decoupled control scheme of grid-connected split-source inverters
2017
Grid-connected power conversion systems for renewable energy sources must fulfill several requirements, e.g., the high efficiency, the reduced cost and complexity, and, quite often, the boost capabilities that is usually achieved using a front-end dc–dc boost converter before the inversion stage, leading to a two-stage architecture. Meanwhile, single-stage power conversion systems, which perform the boosting operation within the inversion one, offer some potential advantages, in terms of reducing the complexity and the volume of the whole system. Among several proposed options, the split-source inverter (SSI) has been recently proposed by Abdelhakim et al. as an alternative option with some…
PV Reconfiguration Systems: a Technical and Economic Study
2017
Dynamical electrical array reconfiguration strategies for grid-connected PV systems have been proposed as solution to improve energy production due to the mismatch effect of PV plants during partial shading conditions. Strategies are based on the use of dynamic connections between PV panels given by the employment of switches that allow for each panel the series, parallel or exclusion connections, physically changing the electrical connections between the related PV modules, consequentially modifying the layout of the plant. Usually the cost of the dynamic matrix is not taken into account. This novel work evaluates the economic advantages obtained by the use of reconfiguration strategies in…
Overview and experimental analysis of MC SPWM techniques for single-phase five level cascaded H-bridge FPGA controller-based
2016
This paper presents an overview and experimental analysis of the MC SPWM techniques for single-phase cascaded H-bridge inverter. The multilevel power converters are an alternative to traditional converters known as “three-level converters”. The voltage waveforms and the related frequency spectra, which have been obtained by simulation analysis in Matlab-Simulink environment, are here reported for all the proposed modulation techniques. The simulation results have been experimentally validated through means of a DC/AC, five-level, single-phase converter prototype with an appropriate test bench.
Cascaded H-Bridges Multielvel Inverters: grid connected advanced applications
Power electronics is going to increase in the modern electrical systems. It is well known that the use of power electronics allows the management and the control of the energy flow, obtaining voltage and current waveforms suitable for electrical loads. In this scenario, multilevel power converters are finding increased attention in industry and academia as one of the promising choices of electronic conversion thanks to their features and many different application fields with high power and medium voltage. Moreover, they are fundamental in interfacing electric grid to high power renewable energy systems (i.e. PV, Wind farm, Biomass, Fuel Cell etc.). Nowadays, the research is focused on the …
Enhanced Current Loop PI Controllers with Adaptive Feed-Forward Neural Network via Estimation of Grid Impedance: Application to Three-Phase Grid-Tied…
2022
This paper describes a single-stage grid-connected three-phase photovoltaic inverter feeding power to the grid. Using the Recursive Least Squares (RLS) Estimator, an online grid impedance technique is proposed in the stationary reference frame. The method iteratively estimates the grid resistance and inductance values and is effective in detecting inverter islanding according to IEEE standard 929-2000. An Adaptive Feedforward Neural (AFN) Controller has also been developed using the inverse of the system to improve the performance of the inner-loop Proportional-Integral controllers under dynamical conditions and provide better DC link voltage stability. The neural network weights are comput…
Feasibility analysis and study of a grid-connected hybrid electric system: Application in the building sector
2016
This paper represents the feasibility study and analysis of a grid-connected hybrid (PV-Wind) system with battery, realized within the project DE.DU.ENER.T and installed in the research centre CRTEn located in the northern Tunisia in the city of Borj-Cedria. The main objective of this work is to exploit renewable sources of electrical energy production to electrify the desired building. So, to minimize electricity consumption costs, reduce the adverse effects of pollutants products from the diesel power systems and sometimes happen to sell the surplus of energy produced. The HOMER (Hybrid Optimization Model of Electric Renewable) software is used to estimate system size and its performance …
An Adaptive Robust Predictive Current Control for Three-Phase Grid-Connected Inverters
2011
This paper presents an adaptive robust predictive current control (RPCC) for grid-connected three-phase inverters that exhibit zero steady-state current error. The error correction is achieved by means of an adaptive strategy that works in parallel with the deadbeat algorithm, therefore preserving the typical fast response of the predictive law. The resulting control adapts to any particular L or LCL filter by estimation of the resistive part of the filter. As a variety of the RPCC class of control, it offers the best tradeoff between robustness and speed. © 2009 IEEE.
Simulation and experimental validation of multicarrier PWM techniques for three-phase five-level cascaded H-bridge with FPGA controller
2017
The FPGA represents a valid solution for the design and implementation of control systems for inverters adopted in many fields of power electronics because of its high flexibility of use. This paper presents an overview and an experimental validation of the MC SPWM techniques for a three-phase, five-level, cascaded H-Bridge inverter with FPGA controller-based. Several control algorithms are here implemented by means of the VHDL programming language and the output voltage waveforms obtained from the main PWM techniques are compared in terms of THD%. Simulation and experimental results are analyzed, compared and discussed.